Target Mathematics by- Dr.Agyat Gupta

 Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony visit us: agyatgupta.com;Ph. :7000636110(O) Mobile : $\underline{9425109601(P)}$
Target Mathematics by Dr. Agyat Gupta

BLUE PRINT

Time Allowed : 3 hours
Maximum Marks : 80

S. No.	Chapter	VSA/Case based (1 mark)	$\begin{gathered} \text { SA-I } \\ \text { (2 marks) } \end{gathered}$	SA-II (3 marks)	LA (5 marks)	Total
1.	Relations and Functions	3(3)	-	1(3)	-	4(6)
2.	Inverse Trigonometric Functions	-	1(2)	-	-	1(2)
3.	Matrices	2(2)	-	-	-	2(2)
4.	Determinants	1(1)*	1(2)*	-	1(5)*	3(8)
5.	Continuity and Differentiability	-	1(2)	2(6) ${ }^{\text {(}}$	-	3(8)
6.	Application of Derivatives	1(4)	1(2)	1(3)	-	3(9)
7.	Integrals	$2(2)^{\#}$	1(2)*	1(3)*	-	4(7)
8.	Application of Integrals	-	1(2)	1(3)	-	2(5)
9.	Differential Equations	1(1)*	1(2)	1(3)	-	3(6)
10.	Vector Algebra	3(3)	1(2)*	-	-	4(5)
11.	Three Dimensional Geometry	2(2) ${ }^{\text {(}}$	1(2)	-	1(5)*	4(9)
12.	Linear Programming	-	-	-	1(5)*	1(5)
13.	Probability	$2(2)^{\#}+1(4)$	1(2)	-	-	4(8)
	Total	18(24)	10(20)	7(21)	3(15)	38(80)

[^0]\section*{12

041}

MATHEMATICS

Time allowed : $\mathbf{3}$ hours
Maximum marks: 80

General Instructions :

1. This question paper contains two parts A and B. Each part is compulsory. Part-A carries 24 marks and Part-B carries 56 marks.
2. Part-A has Objective Type Questions and Part-B has Descriptive Type Questions.
3. Both Part-A and Part-B have internal choices.

Part - A :

1. It consists of two Sections-I and II.
2. Section-I comprises of 16 very short answer type questions.
3. Section-II contains 2 case study-based questions.

Part-B :

1. It consists of three Sections-III, IV and V.
2. Section-III comprises of 10 questions of 2 marks each.
3. Section-IV comprises of 7 questions of 3 marks each.
4. Section- V comprises of 3 questions of 5 marks each.
5. Internal choice is provided in 3 questions of Section-III, 2 questions of Section-IV and 3 questions of Section-V. You have to attempt only one of the alternatives in all such questions.

PART - A

Section - I

1. Evaluate : $\int_{0}^{\pi / 2} x \cos x d x$

OR
Evaluate : $\int \cos ^{3} x \sin x d x$
2. Check whether the function $f: N \rightarrow N$ defined by $f(x)=4-3 x$ is one-one or not.
3. Solve the differential equation $\frac{d y}{d x}=2^{y-x}$.

OR
Solve the differential equation $\frac{d y}{d x}=\left(\frac{y}{x}\right)^{1 / 3}$.
4. Simplify : $\tan \theta\left[\begin{array}{ll}\sec \theta & \tan \theta \\ \tan \theta & -\sec \theta\end{array}\right]+\sec \theta\left[\begin{array}{ll}-\tan \theta & -\sec \theta \\ -\sec \theta & \tan \theta\end{array}\right]$
5. Find the direction cosines of the line that makes equal angles with the three axes in space.

OR

Find the vector equation of the symmetrical form of equation of straight line $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$
6. Prove that the function $f(x)=\sqrt{3} \sin 2 x-\cos 2 x+4$ is one-one in the interval $\left[-\frac{\pi}{6}, \frac{\pi}{3}\right]$.
7. A bag contains 5 red and 3 blue balls. If 3 balls are drawn at random without replacement, then find the probability of getting exactly one red ball.

OR

If $P(A)=\frac{2}{5}, P(B)=\frac{3}{10}$ and $P(A \cap B)=\frac{1}{5}$, then find the value of $P\left(A^{\prime} \mid B^{\prime}\right)$.
8. Find the angle between the vectors \vec{a} and \vec{b} if $\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=4 \hat{i}+4 \hat{j}-2 \hat{k}$.
9. A matrix A of order 3×3 has determinant 5 . What is the value of $|3 A|$?

OR
If $f(x)=\left|\begin{array}{ccc}(1+x)^{17} & (1+x)^{19} & (1+x)^{23} \\ (1+x)^{23} & (1+x)^{29} & (1+x)^{34} \\ (1+x)^{41} & (1+x)^{43} & (1+x)^{47}\end{array}\right|=A+B x+C x^{2}+\ldots . .$, then prove that $A=0$.
10. Find the vector in the direction of the vector $\hat{i}-2 \hat{j}+2 \hat{k}$ that has magnitude 9 .
11. If E and F are events such that $0<P(F)<1$, then prove that $P(E \mid F)+P(\bar{E} \mid F)=1$
12. Find the direction cosines of the line joining $A(0,7,10)$ and $B(-1,6,6)$.
13. If $g(x)=x^{2}-4 x-5$, then prove that g is not one-one on R.
14. Find the projection of the vector $\vec{a}=2 \hat{i}+3 \hat{j}+2 \hat{k}$ on the vector $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$.
15. If a matrix has 12 elements, then it has \qquad possible orders.
16. Evaluate : $\int 2^{2^{2^{x}}} 2^{2^{x}} 2^{x} d x$

Section - II

Case study-based questions are compulsory. Attempt any 4 sub parts from each question. Each sub-part carries 1 mark.

17. The Government declare that farmers can get ₹ 200 per quintal for their potatoes on $1^{\text {st }}$ February and after that, the price will be dropped by ₹ 2 per quintal per extra day. Ramu's father has 80 quintal of potatoes in the field and he estimates that crop is increasing at the rate of 1 quintal per day.
Based on the above information, answer the following question.
(i) If x is the number of days after $1^{\text {st }}$ February, then price and quantity of potatoes respectively can be expressed as

(a) $₹(200-2 x),(80+x)$ quintals
(b) $₹(200-2 x),(80-x)$ quintals
(c) $₹(200+x), 80$ quintals
(d) None of these
(ii) Revenue R as a function of x can be represented as
(a) $R(x)=2 x^{2}-40 x-16000$
(b) $R(x)=-2 x^{2}+40 x+16000$
(c) $R(x)=2 x^{2}+40 x-16000$
(d) $R(x)=2 x^{2}-40 x-15000$
(iii) Find the number of days after $1^{\text {st }}$ February, when Ramu's father attain maximum revenue.
(a) 10
(b) 20
(c) 12
(d) 22
(iv) On which day should Ramu's father harvest the potatoes to maximise his revenue?
(a) $11^{\text {th }}$ February
(b) $20^{\text {th }}$ Febraury
(c) $12^{\text {th }}$ February
(d) $22^{\text {nd }}$ February
(v) Maximum revenue is equal to
(a) ₹ 16000
(b) ₹ 18000
(c) ₹ 16200
(d) ₹ 16500
18. In an annual board examination, in a particular school, 30% of the students failed in Chemistry, 25\% failed in Mathematics and 12% failed in both Chemistry and Mathematics. A student is selected at random.
(i) The probability that the selected student has failed in Chemistry, if it is known that he has failed in Mathematics, is
(a) $\frac{3}{10}$
(b) $\frac{12}{25}$
(c) $\frac{1}{4}$
(d) $\frac{3}{25}$
(ii) The probability that the selected student has failed in Mathematics, if it is known that he has failed in Chemistry, is
(a) $\frac{22}{25}$
(b) $\frac{12}{25}$
(c) $\frac{2}{5}$
(d) $\frac{3}{25}$
(iii) The probability that the selected student has passed in at least one of the two subjects, is
(a) $\frac{22}{25}$
(b) $\frac{88}{125}$
(c) $\frac{43}{100}$
(d) $\frac{3}{75}$
(iv) The probability that the selected student has failed in at least one of the two subjects, is
(a) $\frac{2}{5}$
(b) $\frac{22}{25}$
(c) $\frac{3}{5}$
(d) $\frac{43}{100}$
(v) The probability that the selected student has passed in Mathematics, if it is known that he has failed in Chemistry, is
(a) $\frac{2}{5}$
(b) $\frac{3}{5}$
(c) $\frac{1}{5}$
(d) $\frac{4}{5}$

PART - B

Section - III

19. Find $\frac{d y}{d x}$ at $x=1, y=\frac{\pi}{4}$, if $\sin ^{2} y+\cos x y=K$.
20. Find the value of $\int \frac{d x}{\sqrt{x}+\sqrt[3]{x}}$.

OR

Evaluate : $\int \frac{1}{1+3 \sin ^{2} x+8 \cos ^{2} x} d x$
21. An urn contains 10 black and 5 white balls. Two balls are drawn from the urn one after the other without replacement, then find the probability that both drawn balls are black.
22. Find the number of solutions of the equation $2 \cos ^{-1} x+\sin ^{-1} x=\frac{11 \pi}{6}$, if $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$.
23. Evaluate the determinant $\Delta=\left|\begin{array}{ll}\log _{3} 512 & \log _{4} 3 \\ \log _{3} 8 & \log _{4} 9\end{array}\right|$.

OR
If x is a complex root of the equation
$\left|\begin{array}{lll}1 & x & x \\ x & 1 & x \\ x & x & 1\end{array}\right|+\left|\begin{array}{ccc}1-x & 1 & 1 \\ 1 & 1-x & 1 \\ 1 & 1 & 1-x\end{array}\right|=0$, then find the value of $x^{2007}+x^{-2007}$.
24. Find the solution of the differential equation $\frac{d y}{d x}=\frac{x^{2}+y^{2}+1}{2 x y}$ satisfying $y(1)=1$.
25. The x-coordinate of a point on the line joining the points $P(2,2,1)$ and $Q(5,1,-2)$ is 4 . Find its z-coordinate.
26. Find the point on the curve $y=(x-3)^{2}$ where the tangent is parallel to the chord joining $(3,0)$ and $(4,1)$.
27. Find the area bounded by the curve $y^{2}=x$, line $y=4$ and y-axis.
28. Find a unit vector perpendicular to the plane $A B C$, where A, B and C are the points $(3,-1,2),(1,-1,-3)$, $(4,-3,1)$ respectively.

OR

Let $\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{b}=3 \hat{i}-\hat{j}+2 \hat{k}$ be two vectors. Show that the vectors $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$ are perpendicular to each other.

Section - IV

29. Show that the height of the closed cylinder of given surface area and maximum volume, is equal to the diameter of base.
30. Solve : $\left(x \sqrt{x^{2}+y^{2}}-y^{2}\right) d x+x y d y=0$
31. If $y=e^{x} \sin x^{3}+(\tan x)^{x}$, then find $\frac{d y}{d x}$.

OR

If $x=3 \sin t-\sin 3 t, y=3 \cos t-\cos 3 t$, then find $\frac{d^{2} y}{d x^{2}}$ at $t=\frac{\pi}{3}$.
32. Find the area bounded by the lines $y=1-||x|-1|$ and the x-axis.
33. Let $f(x)=\left\{\begin{array}{r}x+a \sqrt{2} \sin x, 0 \leq x<\frac{\pi}{4} \\ 2 x \cot x+b, \frac{\pi}{4} \leq x \leq \frac{\pi}{2} \\ a \cos 2 x-b \sin x, \frac{\pi}{2}<x \leq \pi\end{array}\right.$ be continuous in $[0, \pi]$, then find the value of $a+b$.
34. Evaluate : $\int_{0}^{\pi / 2} \frac{\sin ^{2} x}{(1+\sin x \cos x)} d x$

Find the value of $\int_{\pi / 4}^{3 \pi / 4} \frac{x}{1+\sin x} d x$.
35. Show that the relation R in the set of real numbers, defined as $R=\left\{(a, b): a \leq b^{2}\right\}$ is neither reflexive, nor symmetric, nor transitive.

Section-V

36. Find the product $B A$ of matrices $A=\left[\begin{array}{rrr}-5 & 1 & 3 \\ 7 & 1 & -5 \\ 1 & -1 & 1\end{array}\right], B=\left[\begin{array}{lll}1 & 1 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 3\end{array}\right]$ and use it in solving the equations: $x+y+2 z=1 ; 3 x+2 y+z=7 ; 2 x+y+3 z=2$.

OR
Find the adjoint of the matrix $A=\left[\begin{array}{ccc}-1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{array}\right]$ and hence show that $A \cdot(\operatorname{adj} A)=|A| I_{3}$.
37. Solve the following linear programming problem graphically.

Minimize $Z=x-7 y+227$
subject to constraints :
$x+y \leq 9$
$x \leq 7$
$y \leq 6$
$x+y \geq 5$
$x, y \geq 0$

OR

Solved the following linear programming problem graphically.
Maximize $Z=11 x+9 y$
subject to constraints :
$180 x+120 y \leq 1500$
$x+y \leq 10$
$x, y \geq 0$
38. If the lines $\frac{x-1}{-3}=\frac{y-2}{-2 k}=\frac{z-3}{2}$ and $\frac{x-1}{k}=\frac{y-2}{1}=\frac{z-3}{5}$ are perpendicular, then find the value of k and hence find the equation of plane containing these lines.

OR
Find the equation of the plane that contains the point $(1,-1,2)$ and is perpendicular to both the planes $2 x+3 y-2 z=5$ and $x+2 y-3 z=8$. Hence find the distance of point $P(-2,5,5)$ from the plane obtained above.

Target Mathematics by Dr. Agyat Gupta

[^0]: *It is a choice based question.
 \#Out of the two or more questions, one/two question(s) is/are choice based.

